Quick Course Search

Petroleum Engineering

In order to see more information about any course, simply click on it!

This view does not contain classes that have not been offered in the past 2 years. If you want to view those classes click here:
All Courses

PET E275 Petroleum Reservoir Fluids Course Page

Description: Qualitative and quantitative phase behavior of petroleum reservoir fluids through the algebraic and numerical application of thermodynamic theory, equations of state, and empirical correlations. Determination of engineering PVT parameters. Oilfield waters. Introduction to mass transfer. Prerequisite: CHEM 105.

PET E364 Drilling Engineering Course Page

Description: Rotary drilling systems, elements of rock mechanics, properties and field testing procedures of drilling fluids, drilling fluids hydraulics, drill bit hydraulics and mechanics, well control, factors affecting rate of penetration, drill string mechanics, fundamentals of directional drilling. Prerequisites: CH E 312 or equivalent and CIV E 270.

PET E365 Well Logging and Formation Evaluation Course Page

Description: Theory and engineering applications of measurements of physical properties of the formation near the well bore; interpretation and use of the information in reservoir engineering. Prerequisite: PET E 275.

PET E366 Petroleum Production Operations Course Page

Description: Land units in Western Canada, types and characteristics of well completions, perforating, wellbore damage and simulation, combined inflow and well performance analysis, multiphase flow through conduits, oil well pumping, gas lift, surface facilities and flow measurement, applied mass transfer. Prerequisite: CH E 312.

PET E373 Fundamental Reservoir Engineering Course Page

Description: Rock properties (porosity, permeability): definition, measurement and models. Rock-fluid interaction (wettability, relative permeability, interfacial tension, capillary pressure): definition, measurement and models. Single and multiphase flow through porous media Darcy equation and diffusivity equation: Derivation and solution for different coordinates and boundary conditions. Prerequisite: PET E 275. PET E 373 cannot be taken for credit if credit has already been obtained in PET E 473.

PET E444 Natural Gas Engineering Course Page

Description: Topics include gas properties, reserves estimation, gas well deliverability, gas well testing, gas storage, surface facilities, and transmission. Production of unconventional gas reservoirs (coal beds, hydrates, tight sand and shale gas). Prerequisite: PET E 275.

PET E471 Enhanced Oil Recovery Course Page

Description: Classification of EOR methods, areal, vertical and volumetric sweep efficiencies, predictive models for immiscible displacement. Frontal advance theory and Buckley-Leverett-Weldge approach. Chemical (alkaline, polymer, surfactant, micellar injection) flooding. Miscible-immiscible gas (hydrocarbon and CO2) injection. Prerequisite: PET E 373.

PET E475 Applied Reservoir Engineering Course Page

Description: Reserves estimation. Analysis and prediction of reservoir performance by use of material balance. Primary recovery performance for water influx and solution gas drive reservoirs. Decline curve analysis. Basics of well test analysis. Pressure drawdown and buildup tests. Average reservoir pressure estimation. Drill stem testing and gas well testing. Prerequisite: PET E 373.

PET E476 Well Completion and Stimulation Course Page

Description: A design course covering new developments in the area of well engineering. Will include construction, completion, and stimulation of oil/gas wells. Co-requisite: PET E 364.

PET E477 Modelling in Petroleum Engineering Course Page

Description: Basics of numerical reservoir simulation and numerical solution of partial differential equations. Simulation methods as applied to specific problems in petroleum reservoir behavior. Applications on primary, secondary and tertiary recovery phases of petroleum production using commercial simulation packages. Prerequisites: PET E 373 and CH E 374.

PET E478 Thermal Methods in Heavy Oil Recovery Course Page

Description: A design course covering new developments in the area of heavy oil recovery. Will include modeling and designing heavy-oil recovery applications and thermal methods. Prerequisite: PET E 373.

PET E484 Oil and Gas Property Evaluation Course Page

Description: Principles of property evaluation as a function of resource type, economics, technology, risk, and policies. Investment decision making tools. Cost information for petroleum exploration, drilling, production and development. Case studies on conventional and unconventional resources. Canadian and international oil and gas regulations. International and regional factors impacting oil and gas prices. Corequisite: ENG M 310 or 401 or equivalent.

PET E496 Petroleum Engineering Design Project Course Page

Description: Designed to deal with special case studies in the mining and petroleum industries; an analysis of reserves; the prediction of production and operating procedures related to the project; the application of economics in the analysis of profitability; economics and planning as tools for a management position. Prerequisite: PET E 484. Note: Restricted to fourth-year traditional and fifth-year co-op engineering students.

PET E630 Advanced Reservoir Engineering Course Page

Description: Single and multiphase flow in porous media: concepts of relative permeability, capillary pressure, and wettability. Immiscible and miscible displacement processes in porous media. Overall reservoir performance (tank model): Mechanics of primary production and material balance equation of gas, gas condensate, volatile and black oil reservoirs. Graphical and analytical decline curve analysis. Diffusivity equation and pressure transient in oil and gas reservoirs. Prerequisite: PET E 475 or consent of instructor.

PET E631 Advanced Production Engineering Course Page

Description: Inflow performance relationships. Analysis of multiphase flow through pipes and restrictions using flow correlations and mechanistic methods. Flow pattern prediction for vertical, horizontal and inclined pipes. Total system analysis, production optimization. Design of artificial lift systems. Prerequisite: PET E 366 or consent of instructor.

PET E633 Advanced Enhanced Oil Recovery Course Page

Description: Evaluation and operation of secondary and tertiary recovery projects; principles of water flooding, chemical flooding and gas flooding techniques. Prerequisite: PET E 471 or consent of instructor.

PET E636 Computational Methods for Transport Phenomena in Porous Media Course Page

Description: Single and multi-phase flow problems in porous media for compressible and incompressible flow. Multi-dimensional flow will be considered. Analytical, numerical and stochastic flow models will be developed for heterogeneous porous media. Prerequisites: Consent of instructor. Credit cannot be obtained for both PET E 635 and PET E 636.

PET E649 Advanced Reservoir Simulation Course Page

Description: Simulation of recovery processes and various EOR methods such as water flooding, chemical flooding and gas flooding; PVT modeling; multiphase flash, compositional and thermal simulation. Modeling naturally fractured reservoirs. Prerequisite: PET E 477 or consent of instructor. Credit cannot be obtained for both PET E 649 and PET E 650.

PET E664 Advanced Drilling Engineering Course Page

Description: Recent advances in drilling techniques. Optimization of drilling operational parameters, directional drilling and deviation control, design aspects of horizontal and multilateral well drilling, measurement while drilling, drill string mechanics, bottomhole assembly design, tubular stability, drag and torque problems. Prerequisite: PET E 364 or consent of instructor.

PET E694 Advanced Topics in Petroleum Engineering Course Page

Description: An advanced treatment of selected petroleum engineering topics of current interest to staff and students.

PET E709 Special Topics in Petroleum Engineering Course Page

Description: Reading Course. Reading and discussion of selected topics in Petroleum Engineering.

PET E900A Directed Research Course Page

Description: An engineering project for students registered in a Masters of Engineering Program.

PET E900B Directed Research Course Page

Description: An engineering project for students registered in a Masters of Engineering program.

PET E910A Directed Research Course Page

Description: An engineering project for students registered in the joint MBA/MEng program.

PET E910B Directed Research Course Page

Description: An engineering project for students registered in the joint MBA/MEng program.